
1. BASIC THEOREMS FOR GAUSSIAN PROCESSES

We now prove concentration inequalities and comparison theorems for Gaussian processes. The difficult
and interesting part of the work was already done in the finite dimensional case. We simply deduce the
general case from the finite case.

Comparison theorems: We discuss the Sudakov-Fernique inequality. Let X and Y be Gaussian processes
on T . Suppose they have the same mean function and τX (t,s) ≤ τY (t,s) for all t,s ∈ T (we shall henceforth
use the notation τX (t,s) :=

√
E[(Xt −Xs)2]). Then is it true that E[supt∈T Xt ] ≤ E[supt∈T Yt ]? The answer is

essentially yes, with a few caveats.
Firstly, the question of measurability of X∗ = X∗

T := supt∈T Xt . If T is countable, X∗
T is trivially measurable.

But if T is uncountable this is not necessarily the case. Indeed, in the cylinder sigma-algebra this is not
measurable at all, so the only hope is when X has some more structure. Therefore we make an assumption.

Separability assumption: There exists a countable subset T ′ of T such that supt∈T Xt = supt∈T ′ Xt . For exam-
ple, this satisfied if T is a separable metric space and X is C(T )-valued. Under this assumption, X∗

T is a
random variable (measurable).

Let Fn be finite sets that increase to T ′. Then E[X∗
Fn

] ≤ E[Y ∗
Fn

] and X∗
Fn
↑ X∗

T ′ a.s. and similarly for Y . By the
monotone convergence theorem we get E[X∗]≤ E[Y ∗].

Observe that monotone convergence theorem holds when X∗
Fn

(respectively Y ∗
Fn

) are bounded from below
by an integrable random variable. In this case we can take and t0 ∈ T and use Xt0 as a lower bound for
X∗

Fn
. Same story for Y . For this same reason, E[X∗

T ] has a well-defined value in (−∞,+∞]. Unlike in finite
dimensional settings, the supremum could very well be infinite.

Exercise 1. Check with care that Slepian’s and Gordon’s inequalities also remain valid for general Gaussian
processes.

Concentration theorems: Let X be a centered Gaussian process on T . For finite T , we saw that P{|X∗−M|≥
t}≤ 2Φ(t/σT ) where M is a median of X∗ and σ2

T = supt∈T E[X2
t ]. Does this remain valid for general T ?

We again make the separability assumption. In addition assume that X∗ < ∞ a.s. Then as before there
exist increasing finite sets Fn such that X∗

Fn
↑ X∗ a.s. Argue that the medians of X∗

Fn
converge to that of X∗. By

adding more points to Fn if necessary, we may assume that σ2
Fn
→ σ2

T .
From P{|X∗

Fn
−M| ≥ t} ≤ 2Φ(t/σFn) educe that the concentration inequality holds. Quite often Borell’s

isoperimetric inequality refers to this inequality -

P{|X∗ −M|≥ t}≤ 2Φ(t/σT )≤ 2e−t2/2σ2
T .(1)

Thus the supremum of a Gaussian process (if it is finite!) has tails that decay no slower than the Gaussian
in the process with maximal variance. Historically the following consequence was a predecessor to Borell’s
inequality (and perhaps inspired the research that led to it?)

Exercise 2. Let X be a centered Gaussian process on T . Assume separability and that X∗ is finite a.s. Show
that lim

x→+∞
1
x2 logP{X∗

T ≥ x} =− 1
2σ2

T
.

How to check that X∗ is finite a.s.? If T is a compact metric space and X is C(T )-valued, then it is clear
that X∗ is finite. But checking that X is continuous on T is no easier than checking the boundedness. Indeed
both problems are closely related and we shall discuss them later. As remarked in an earlier lecture, this is
a fundamental (and completely solved) problem in Gaussian processes.

Exercise 3. If X is as above and X∗ < ∞ a.s. then E[X∗] < ∞.
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Isoperimetric inequality: Let X = (X1,X2, . . .) where Xi are i.i.d. N(0,1). Then X is a Gaussian process on N
and its distribution is denoted γN. What form does isoperimetric inequality take?

From the finite dimensional case, Φ−1(γn(Aε))≥Φ−1(γn(A))+ε, where γn is the distribution of (X1, . . . ,Xn)
(push forward γN by projection on the first n coordinates). Note that Aε is the ε neighbourhood in Euclidean
metric on Rn.

Now if A is a cylinder set in RN, then A = B×R×R×R . . . for some large n and for some B⊆ Rn (Borel).
Therefore, by the previous paragraph we easily get Φ−1(γN(Aε))≥Φ−1(γN(A))+ε, where Aε = {x ∈RN : ‖x−
y‖2 ≤ ε for some y ∈ A} with ‖ ·‖2 being the !2 norm.

If A is an arbitrary measurable set in RN then there exist finite dimensional cylinder sets whose measures
decrease to A. Deduce that the isoperimetric inequality continues to remain valid.

Exercise 4. Let X = (X1,X2, . . .) be a centered Gaussian process on N with σ2 = supn E[X2
n ] < ∞. Let µ be the

distribution of X . Show that Φ−1(µ(Aεσ))≥Φ−1(µ(A))+ ε for any measurable A⊆ RN.

A zero-one law: In proving concentration for the maximum, we assumed that X∗ is finite almost surely.
Full discussion of when that happens will come later. For now we show that P{X∗ < ∞} is either 0 or 1,
perhaps not unexpected. As always, we assume separability.

By moving to the countable subset T ′, we may assume that T = N. Suppose P{X∗ = ∞} < 1. Then there
exists A < ∞ and u >−∞ such that P{X∗ < A}≥Φ(u). By Exercise ??, we get P{X∗ ≤ A+σε}≥Φ(u+ε) which
converges to 1 as ε→ 0. Thus, X∗ < ∞ a.s.

To summarize, if X∗ is finite with positive probability, then it is finite a.s. and has finite expectation and
sub-Gaussian tails!

Banach space valued Gaussian random variable: Let (B,‖ ·‖) be a Banach space with a separable dual B∗. A
B-valued random variable X is said to be Gaussian if its distribution is Radon (i.e., P{X ∈A}= supK P{X ∈K}
where the supremum is over all compact subsets K ⊆ A) and for every L ∈ B∗ we have that L(X) is N(0,σ2

L)
for some σ2

L.
Consider a Gaussian process X = (Xt)t∈T . Suppose we have some regularity on sample paths, for exam-

ple, suppose that T is a separable metric space and X is C(T ) valued. Then X is a C(T )-valued Gaussian (of
course C(T ) is a Banach space if T is compact and a locally convex space even if not).

Conversely, if X is a B-valued Gaussian random variable, and T is a countable dense subset of the unit
ball of B∗, then by setting XL := L(X) for L ∈ T , we get a Gaussian process indexed by T .

Many books talk in the language of Banach space valued Gaussians. I have not understood what advan-
tage there is in talking about B-valued random variables instead of simply Gaussian processes. I will avoid
the language of Banach space valued random variables till I understand it myself!
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1. AN APPLICATION TO RANDOM MATRICES

Here we present10 few applications of the basic results on Gaussian processes, namely concentration of
measure and comparison theorems.

Extreme singular values of a rectangular Gaussian matrix: Let Am,n = (ai, j)i≤m, j≤n be a matrix whose entries
are i.i.d. N(0,1). We assume m≤ n and denote the singular values of A by s1 ≤ s2 ≤ . . .≤ sm (by definition s2

i
are the eigenvalues of AAt ). The following result gives bounds for the smallest and largest singular values.

Theorem 1 (Gordon). With A as above, E[s1]≥
√

n−
√

m and E[sn]≤
√

n+
√

m.

Proof. For (u,v) ∈ T := Sm−1 × Sn−1 define X(u,v) = utAv = ∑m
i=1 ∑n

j=1 ai, juiv j. It has zero mean and E[|Xu,v −
Xu′,v′ |2] = 2−2〈u,u′〉〈v,v′〉 (check!).

Consider a different Gaussian process on the same index set defined by Y (u,v) = ∑m
i=1 uiξi + ∑n

j=1 viηi

where ξi,ηi are i.i.d. N(0,1). Then E[|Yu,v−Yu′,v′ |2] = |u− u′|2 + |v− v′|2 = 4− 2〈u,u′〉− 2〈v,v′〉. Both X and Y
are continuous on T and hence the comparison theorems are applicable.

Thus,

E[|Yu,v−Yu′,v′ |2]−E[|Xu,v−Xu′,v′ |2] = 2(1−〈u,u′〉)(1−〈v,v′〉)

which is non-negative for all (u,v),(u′,v′)∈ T . Therefore, by the Sudakov-Fernique inequality we get E[X∗]≤
E[Y ∗]. Clearly Y ∗ ≤ ‖ξ‖+‖η‖ and E[‖ξ‖]≤

√
E[‖ξ‖2] =

√
m and E[‖η‖]≤

√
E[‖η‖2] =

√
n. But X∗ is precisely

sm. Therefore E[sm]≤
√

n+
√

m.
Next observe that s1 = minu maxv Xu,v. We have already seen that

E[|Yu,v−Yu′,v′ |2]≥ E[|Xu,v−Xu′,v′ |2] for all u,v,u′,v′,

E[|Yu,v−Yu,v′ |2] = E[|Xu,v−Xu,v′ |2] for all u,v,v′.

For the second, observe that 〈u,u′〉= 1 when u = u′. Gordon’s inequality applies to give E[s1]≥E[minu maxv Yu,v].
As the last step in the proof, observe that picking v = η/‖η‖ and u =−ξ/‖ξ‖ achieves the minu maxv Yu,v and
gives E[minu maxv Yu,v] = E[‖η‖]−E[‖ξ‖]. Since ‖η‖2 ∼ χ2

n−1,

E[‖η‖] = 1
2n/2Γ(n/2)

∞Z

0

√
xe−xx

n
2−1dx =

√
2Γ( n+1

2 )
Γ( n

2 )

and similarly E[‖ξ‖] =
√

2Γ( m+1
2 )

Γ( m
2 ) . Thus the theorem is proved if we show that E[‖η‖]−E[‖ξ‖] ≥

√
n−

√
m.

Deduce this from Exercise ??. !

Exercise 2. Show that ν→
√

2Γ( ν+1
2 )

Γ( ν
2 ) −

√
ν is increasing for ν≥ 1.

Location of individual singular values of a Gaussian matrix: Let Am,n be a real symmetric matrix such
that ai, j, i ≤ j are i.i.d. N(0,1) (it is okay to allow the diagonals to have variance 2 to make it exactly a GOE
matrix). Let λn,1 < .. . < λn,n be the eigenvalues of An/

√
n (normalized so that the empirical distribution of

eigenvalues converges to the semicircle distribution as n tends to infinity)

Theorem 3. There exist deterministic numbers tn,k such that P{|λn,k− tn,k|≥ u}≤Ce−cnu2 for all k ≤ n.

10This material is taken from the paper Local operator theory, random matrices and Banach spaces, by Davidson and Szarek. Roman
Vershynin has several lecture notes that cover this and much more.
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Proof. Recall the min-max representation

λn,n−k+1 =
1√
n

min
v1,...,vk−1

max
u:u⊥v j

utAu.

From this (since A→ utAu is linear for each u) it follows that the function (ai, j)i≤ j≤n → λn,n−k+1 is Lip(2/
√

n).
By the Gaussian concentration inequality, if tn,n−k+1 is a median of λn,n−k+1 then P{|λn,n−k+1−tn,n−k+1|≥ u}≤
2Φ(u/2

√
n)≤ 2e−nu2/8. !

Remark 4. The well-known Wigner’s semicircle law says that the histogram of eigenvalues is close to the
semi-circle density c

√
4− x2. This does not imply a quantitative estimate for the location of individual

eigenvalues. In contrast, the above theorem shows that each eigenvalue is concentrated in a window of
length essentially 1/

√
n. However the actual facts (proved by harder methods) are that eigenvalues are

concentraetd in even smaller windows (of length 1/n if k is away from 1 and n and of length n−2/3 if k is
close to 1 or n).
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